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Ultrafilters

An ultrafilter on a set A is a family U of
subsets of A such that, for all X, Y ⊆ A

(1) X ∩ Y ∈ U ⇐⇒ X ∈ U and Y ∈ U
(2) A−X ∈ U ⇐⇒ X /∈ U .

It follows that

(3) If X ∈ U and X ⊆ Y ⊆ A then Y ∈
U .

(4) A ∈ U
(5) ∅ /∈ U
(6) X ∪ Y ∈ U ⇐⇒ X ∈ U or Y ∈ U

Items (1), (4), and (5) define (proper) fil-
ters ; (3) follows.

Ultrafilters are maximal filters.

Notation: IfQ is any superset-closed fam-
ily of subsets of A, we write (Qx) and say
“for Q-many x” for the quantifier over A
defined by

(Qx)ϕ(x) ⇐⇒ {x ∈ A : ϕ(x)} ∈ Q
⇐⇒ (∃X ∈ Q)(∀x ∈ X)ϕ(x).



Other Views of Ultrafilters

Filters on A are the sets h−1({1}) for homo-
morphisms h from P(A) to Boolean alge-
bras. Ultrafilters are the special case where
h maps to {0, 1}.
Ultrafilters on A are the points of the Čech-
Stone compactification βA of the discrete
space A.

Equivalently, they are operations which, for
any compact Hausdorff space C, transform
mapsA→ C to points ofC, respecting con-
tinuous maps between compact Hausdorff
spaces C.

The nonempty closed sets of βA are the sets

F = {U ∈ βA : F ⊆ U}
for filters F on A.



Ultrapowers

Ultrafilters on A can be identified with cer-
tain operators, ultrapowers, acting on first-
order structures and, in particular, on the
complete structure A on A, whose universe
is A and whose relations and functions are
all of the finitary relations and functions on
A.

U -prodX =

〈XA/(f ∼ g ⇐⇒ (Ua) f (a) = g(a)), . . . 〉
An elementary extension of A is an ultra-
power by an ultrafilter on A iff it is gener-
ated by a single element.

Any element d in any elementary extension
D of the complete structure on A deter-
mines an ultrafilter on A, the type of d (in
D), namely {X ⊆ A : D |= Ẋ(d)}, where
Ẋ is the symbol that denotes X in A.
The submodel of D generated by d is iso-
morphic to the ultrapower of A by this type,
via ḟ (d) 7→ [f ].



Triviality

Each a ∈ A gives an ultrafilter

â = {X ⊆ A : a ∈ X}.
Such ultrafilters are called trivial or prin-
cipal.
Their quantifiers amount to substitution

(âx)ϕ(x) ⇐⇒ ϕ(a).

As points of βA, they are the elements of
A.

â-prodX ∼= X : [f ] 7→ f (a).

As an operation on A-indexed families in
compact Hausdorff spaces, â picks out the
element indexed by a.

An ultrafilter is trivial iff it contains a finite
set.

Convention: Whenever necessary, tacitly
assume ultrafilters are nontrivial. Also tac-
itly assume that filters include the cofinite
filter

{X ⊆ A : A−X is finite}



Rudin-Keisler Ordering

If f : A → B and U is an ultrafilter on A,
then

f (U) = {Y ⊆ B : f−1(Y ) ∈ U}
is an ultrafilter on B.

This is the unique continuous extension of
f : A→ B to βA→ βB.

(f (U)y)ϕ(y) ⇐⇒ (Ux)ϕ(f (x)).

There is a canonical elementary embedding

f (U)-prodX→ U -prodX : [g] 7→ [g ◦ f ],

and all elementary embeddings between ul-
trapowers over A of the complete structure
on A arise in this way.

Define V ≤ U to mean that V = f (U) for
some f . This is the Rudin-Keisler order-
ing of ultrafilters. If V ≤ U , we also say
that V is an image of U .



Tensor Products

Let U and V be ultrafilters on A and B,
respectively. Then

{X ⊆ A×B :

{a ∈ A : {b ∈ B : 〈a, b〉 ∈ X} ∈ V} ∈ A}
is an ultrafilter on A×B, written U ⊗ V .

((U⊗V)〈x, y〉)ϕ(x, y) ⇐⇒ (Ux)(Vy)ϕ(x, y).

(U ⊗ V)-prodX ∼= U -prodV-prodX.

The two projections from A × B to A and
to B send U ⊗ V to U and V , respectively.

If U and V are nontrivial ultrafilters on ω,
then U ⊗V contains {〈x, y〉 ∈ ω2 : x < y},
which we may identify with [ω]2.

In fact, U ⊗ V contains {〈x, y〉 ∈ ω2 :
f (x) < y} for any f : ω → ω.



Selective Ultrafilters

The best ultrafilters on ω are the selective
ones, characterized by the following equiva-
lent properties.

• Every partition of ω into sets not in U
admits a selector in U .
• Every function on ω becomes one-to-

one or constant when restricted to some
set in U .
• Every partition of [ω]2 into two pieces

has a homogeneous set in U . [Kunen]
• For any n, k ∈ ω, every partition of

[ω]n into k pieces has a homogeneous
set in U . [Kunen]
• Every partition of [ω]ω into an analytic

piece and a co-analytic piece has a ho-
mogeneous set in U . [Mathias]
• Only three ultrafilters on ω2 project to
U via both projections (namely U ⊗
U , its reflection in the diagonal τ (U ⊗
U) where τ〈x, y〉 = 〈y, x〉, and ∆(U)
where ∆ : ω → ω2 : x 7→ 〈x, x〉).

Synonyms for “selective” include “Ramsey”
and “Rudin-Keisler minimal.”



P-points

P-points on ω are the ultrafilters character-
ized by the following equivalent properties.

• Every function on ω becomes finite-to-
one or constant when restricted to some
set in U .
• Every countably many sets Xn ∈ U

have a pseudo-intersection in U , i.e.,
a set Y ∈ U such that Y −Xn is finite
for each n.
• In βω, every intersection of countably

many neighborhoods of U is again a
neighborhood (not necessarily open) of
U .
• For any finite partition of [ω]2, there

exist a set H ∈ U and a function f :
ω → ω such that all pairs {x, y} ∈
[H ]2 with f (x) ≤ y lie in the same piece
of the partition. [Taylor]
• In U -prodN, every non-standard ele-

mentary submodel is cofinal.
• Every image of U on a linearly ordered

set contains a set whose image has order-
type ω or ω∗ or 1. [Booth]



Rare and Rapid Ultrafilters

Rare ultrafilters on ω, also called Q-points,
are those U such that every finite-to-one
function on ω becomes one-to-one when re-
stricted to some set in U .

Equivalently, every element of U -prodN that
generates a cofinal submodel in fact gener-
ates the whole model.

An ultrafilter is selective iff it is both a P-
point and rare.

Rapid ultrafilters on ω are those U such
that, for each function f : ω → ω, there
is some X ∈ U whose enumerating function
majorizes f , i.e.,

|{x ∈ X : x < f (n)}| ≤ n for each n ∈ ω.
Equivalently, any element of U -prodN that
generates a cofinal submodel is ≥ some ele-
ment that generates the whole model.

Rare implies rapid.



Existence

The existence of ultrafilters with all these
properties is easy to prove assuming CH.

Construction of a selective ultrafilter un-
der CH:
Build an ultrafilter by starting with the cofi-
nite filter and adjoining more sets, in a trans-
finite induction, to handle all the require-
ments.
The requirements say that the ultrafilter must
contain sets of certain sorts.
There are only c = 2ℵ0 requirements, so, by
CH, well-order them in a sequence of length
ℵ1.
At each stage, the filter built so far is count-
ably generated and therefore has a pseudo-
intersection. That makes it easy to handle
the next requirement.

The same proof works without CH as long
as every filter on ω generated by < c sets
has a pseudo-intersection (i.e., p=c).

In fact, cov(B) = c suffices.



Existence

Under CH, one can also construct ultrafil-
ters with any combination of the properties
“selective,” “P-point,” and “rapid” or nega-
tions thereof, except those excluded by the
facts that selective implies both P-point and
rapid.

In ZFC alone, none of this can be proved.
It is consistent that there are no P-points
[Shelah], and it is consistent that there are
no rapid ultrafilters [Miller].

It is still open whether it is consistent to
have neither P-points nor rapid ultrafilters.
That would require c ≥ ℵ3.



Forcing an Ultrafilter

The natural way to adjoin an ultrafilter on
ω by forcing uses as conditions the infinite
subsets X of ω, ordered by inclusion.
The “meaning” of X is that the generic ul-
trafilter is to contain X . That suggests that
the ordering should be inclusion-mod-finite
and that conditions that agree mod finite
should be identified.
That produces the separative quotient of the
forcing.
It is countably closed, so no new reals are
adjoined.

The generic ultrafilter is selective.
The proof of this is “the same” as the in-
ductive step in the CH construction of a se-
lective ultrafilter.



Complete Combinatorics

The generic ultrafilter has no combinatorial
properties beyond selectivity.

What does that mean?

Suppose κ is a Mahlo cardinal, and consider
the universe obtained by Lévy-collapsing all
cardinals < κ to ω. (So κ is the new ℵ1.)
The resulting Lévy-Mahlo model satisfies
CH, so it has plenty of selective ultrafilters.
It also satisfies the following [Mathias]:
If U is a selective ultrafilter and if [ω]ω is
partitioned into two HOD(R) pieces, then
there is a homogeneous set in U .
That implies that U is generic (w.r.t. forcing
with [ω]ω as above) over the model HOD(R).

We express this by saying that selectivity
is complete combinatorics for forcing with
[ω]ω.

Note that this forcing is equivalent to forc-
ing with countably generated filters on ω,
ordered by reverse inclusion.



Fσ Filter Forcing

One construction of non-selective P-points,
under CH, builds an increasing sequence of
approximating filters, which are Fσ subsets
of the power set of ω [Mathias, Daguenet].

Without CH, the same combinatorial work
applies to generic ultrafilters produced by
the forcing where:

• Conditions are Fσ filters.
• Extension means superset.

This forcing is countably closed, so it adds
no new reals.
It easily follows that the union of the generic
set is an ultrafilter. We call such ultrafilters
Fσ-generic.

Fσ-generic ultrafilters are

• P-points
• but not rapid
• therefore not selective.

Every image of an Fσ-generic ultrafilter is
also Fσ-generic.
So Fσ-generic ultrafilters are P-points with
no rapid images.



Mathias Forcing

Plain Mathias forcing has

• conditions 〈s, A〉 where s ∈ [ω]<ω and
A ∈ [ω]ω.
• 〈s′, A′〉 ≤ 〈s, A〉 if s is an initial seg-

ment of s′, A′ ⊆ A, and s′ − s ⊆ A.

The “meaning” of 〈s, A〉 is that the generic
set g ⊆ ω should have s as an initial seg-
ment and should, except for s, be ⊆ A.

Mathias forcing guided by an ultrafilter U
is the same except that the second compo-
nents A of conditions 〈s, A〉 must be in U .

This adds a generic pseudo-intersection of
all the (ground-model) sets in U .

Plain Mathias forcing is equivalent to a 2-
step iteration: First force with [ω]ω to ad-
join a selective ultrafilter U ; then do Math-
ias forcing guided by U .
Since U is rapid, the enumeration of the
generic g ⊆ ω is a dominating real.



Non-Dominating Mathias Forcing

Are there ultrafilters U such that Mathias
forcing guided by U does not add a domi-
nating real?

Such Mathias non-dominating ultrafilters
exist under CH. [Canjar]

They are P-points with no rapid images.
[Canjar]

Connections with Fσ-genericity?



Strong P-points

Fσ-generic ultrafilters are strong P-points.
[Laflamme]
This means that, given countably many closed
subsets Cn of U , there is a partition of ω into
intervals In = [in, in+1) such that, for any
choice of Xn ∈ Cn, for all n ∈ ω,⋃

n

(Xn ∩ In) ∈ U .

Every strong P-point is a P-point with no
rapid images. [Laflamme]

Every Mathias non-dominating ultrafilter is
a strong P-point. [Laflamme]

Every Fσ-generic ultrafilter is Mathias non-
dominating. [Canjar]



Mathias Non-Dominating

An ultrafilter U is Mathias non-dominating
iff it satisfies the Hrušák-Minami condition
(HM), defined as follows.

For any filter F on a set A, let

F+ = {X ⊆ A : A−X /∈ F}
= {X ⊆ A : (∀Y ∈ F)X ∩ Y 6= ∅}.

For an ultrafilter U on ω, let U<ω be the
filter on [ω]<ω − {∅} generated by the sets
[X ]<ω − {∅} for X ∈ U .

Condition (HM) says that any countable de-
creasing sequence of sets from (U<ω)+ has
a pseudo-intersection in (U<ω)+. (U<ω is a
P+-filter.)

U satisfies (HM) iff U is a strong P-point.

Under CH, there are P-points that have no
rapid images but are not strong P-points.
[Hrušák, Verner]

Question: Might (HM) be complete com-
binatorics for Fσ-genericity?



Laflamme Picture of Fσ Filters

LetQ be an upward-closed family of subsets
of A. The intersection number of Q is the
smallest n ∈ ω such that some n members
of Q have empty intersection.

A Laflamme sequence is a sequence 〈In,Qn〉n∈ω
of pairs such that:

• the In = [in, in+1) form a partition of
ω into intervals,
• each Qn is an upward-closed family of

subsets of In, and
• the intersection numbers of the Qn’s

tend to ∞ with n.

To a Laflamme sequence, associate the filter

L(〈In,Qn〉) = {X ⊆ ω : (∀∞n)X∩In ∈ Qn}.
This is an Fσ filter on ω.

Every Fσ filter on ω is included in one of
this form.

So forcing with Fσ filters is equivalent to
forcing with Laflamme sequences.



Algebra of Ultrafilters

Any binary operation ∗ : A× A→ A on a
set A extends to βA by

U ∗ V = ∗(U ⊗ V).

Equivalently,

((U ∗ V)z)ϕ(z) ⇐⇒ (Ux)(Vy)ϕ(x ∗ y).

Equivalently, first extend

∗ : A× A→ A ⊆ βA

to
∗ : A× βA→ βA

by continuity for fixed first argument in A.
Then extend to

∗ : βA× βA→ βA

by continuity for fixed second argument in
βA.

If ∗ is associative on A, then also on βA.

Not so for commutativity.

The operation ∗ on βA is a continuous func-
tion of the left argument, with the right ar-
gument fixed, but not vice versa.



Idempotents

Let 〈S, ∗〉 be a compact semi-topological semi-
group: S is a compact Hausdorff space, ∗ is
an associative operation on S, and ∗ is con-
tinuous in the left argument.

Then 〈S, ∗〉 has an idempotent element, i.e.,
s with s ∗ s = s. [Ellis, Numakura]

In particular, for any semigroup 〈A, ∗〉, there
are idempotent ultrafilters in βA.
This gives a relatively short proof, due to
Galvin and Glazer, of Hindman’s Theorem:
Let the set F = [ω]<ω − ∅ be partitioned
into finitely many pieces. Then there is an
infinite setH ⊆ F, such that all finite nonempty
unions of members of H are in the same
piece of the given partition. Furthermore,
the members of H can be taken to be pair-
wise disjoint.



Proof of Hindman’s Theorem

The associative binary operation ∪ on F ex-
tends to ∪̇ on βF.

Consider those U ∈ βF that concentrate on
sets that start late, i.e.,

(∀n ∈ ω)(Ux) min(x) > n.

These U form a compact subsemigroup of
〈βF, ∪̇〉, so there is an idempotent among
them. Let U be such an idempotent.

Given a partition of F into finitely many
pieces, let X be the piece in U . We’ll choose
elements x0, x1, · · · ∈ X such that

• max(xi) < min(xi+1) for every i, and
• every finite union of xi’s is in X .

Because U is idempotent, whenever we have
(Ux)ϕ(x), we also have (Ux)(Uy)ϕ(x∪y).

In particular, we have (Ux)x ∈ X and
(Ux)(Uy)x ∪ y ∈ X .
Choose x0 ∈ X such that (Ux)x0∪x ∈ X .

From this and (Ux)x ∈ X get

(Ux)(Uy)
[
x ∪ y ∈ X ∧ x0 ∪ x ∪ y ∈ X

]
.

Also, (Ux) min(x) > max(x0).



Proof of Hindman’s Theorem

Choose x1 ∈ X such that

• min(x1) > max(x0),
• x0 ∪ x1 ∈ X , and
• (Ux)

[
x1 ∪ x ∈ X ∧ x0 ∪ x1 ∪ x ∈ X

]
.

In general, choose xn so that

• min(xn) > min(xn−1),
• for all t ⊆ {0, . . . , n−1},

⋃
i∈t xi∪xn ∈

X , and
• for all such t, (Ux)

⋃
i∈t xi ∪ xn ∪ x ∈

X .

Such an xn exists; in fact there are U -many
choices for xn. After choosing xn, use idem-
potence of U to get, for all t as above,

(Ux)(Uy)
⋃
i∈t
xi ∪ xn ∪ x ∪ y ∈ X.

That, plus its analogs from previous steps,
plus “starting late,” plus X ∈ U provide
what is needed for the next step, choosing
xn+1.
After ω steps, the chosen xi’s constitute the
required homogeneous set.



Union Ultrafilters

Notation: For a set or sequence s of mem-
bers of F, let FU(s) be the collection of all
nonempty finite unions of members of s.

A union ultrafilter is an ultrafilter on F
generated by sets of the form FU(s) where
s is an infinite sequence of pairwise disjoint
members of F.
If the elements sn of the s can be taken
to be ordered in the sense that max(sn) <
min(sn+1) then we call U an ordered union
ultrafilter.

CH implies (using Hindman’s theorem) the
existence of ordered union ultrafilters.

Union ultrafilters are idempotent with re-
spect to ∪̇.

Consider the two maps min,max : F →
ω. Like any maps, they can be applied to
ultrafilters on their domain.

If U is a union ultrafilter, then min(U) and
max(U) are P-points [Hindman, A.B.] with
no common image [A.B.].
In particular, ZFC doesn’t prove the exis-
tence of union ultrafilters.



Forcing Union Ultrafilters

The most natural forcing to add an ordered
union ultrafilter has as conditions infinite se-
quences s = (sn)n∈ω from F with max(sn) <
min(sn+1) for all n.

The “meaning” of s is that FU(s) is in the
generic ultrafilter.

s′ is an extension of s if FU(s′) ⊆ FU(s).
Equivalently, each s′n is a finite union of si’s.
We call s′ a condensation of s.
An extension of s is obtained by deleting
some of its terms si and merging some of
those that survive.

The separative quotient identifies s with s′

if some final segments are equal.
This is countably closed, so the forcing adds
no new reals.

IfG is a generic set of conditions, then {FU(s) :
s ∈ G} is a basis for an ordered union ul-
trafilter on F.
That it is an ultrafilter is a consequence of
Hindman’s theorem. The combinatorics is
the same as in the CH construction of an
ordered union ultrafilter.



Stable Ordered Union Ultrafilters

The ordered union ultrafilters obtained by
the CH construction or by the forcing de-
scribed above have the additional property
of stability, defined as follows:
Given any countably many sequences s(n)

with FU(s(n)) ∈ U , there is an s such that
FU(s) ∈ U and, for each n, a tail of s is a
condensation of s(n).

Note the analogy between this definition and
the pseudo-intersection characterization of
P-points.
Yet stable ordered union ultrafilters have
stronger properties, analogous to those of
selective ultrafilters.



Stability and Partitions

Let U be a stable ordered union ultrafilter.

Every function f defined on F has one of
the following five forms on some set in U .

• a constant
• g ◦min with g one-to-one on ω
• g ◦max with g one-to-one on ω
• g ◦ 〈min,max〉 with g one-to-one on ω2

• a one-to-one function.

For every partition of the ordered n-sequences
from F into k pieces (with n, k ∈ ω), there
is H ∈ U whose ordered n-sequences are all
in the same piece.

For every partition of the ordered ω-sequences
from F into an analytic piece and a co-analytic
piece, there is H ∈ U whose ordered ω-
sequences are all in the same piece.

“Stable ordered union” is complete combi-
natorics for the ordered union forcing de-
scribed above.



Other Ordered Union Ultrafilters

For ordered union ultrafilters, a definition
analogous to P-point (stability) produced
results analogous to selectivity.
What is the “real” analog of P-point?
Recall that Fσ-filter forcing produced non-
selective P-points.
Is there an analog for ordered union ultra-
filters, or more generally for idempotent ul-
trafilters?
Krautzberger initiated a study of forcing by
Fσ idempotent filters.
He showed that, if U is generic for this forc-
ing, then min(U) and max(U) are Fσ-generic,
and in fact mutually generic, by product
forcing.



Minimal Idempotents

Partially order the idempotents in the semi-
group 〈βA, ∗〉 by

U � V ⇐⇒ U ∗ V = V ∗ U = U .
The following are equivalent, for any idem-
potent U .

• U is minimal with respect to �.
• U belongs to some minimal (closed) left

ideal of βA.
• U belongs to all 2-sided ideals of βA.

Such U are called minimal idempotents.
They exist.
In fact, every idempotent is � a minimal
one.
Sets that belong to a minimal idempotent
ultrafilter, called central sets, have strong
combinatorial properties.



Hales-Jewett Theorem

Let W be the set of words on a finite alpha-
bet Σ.
Let A be the set of words on Σ∪{v} where
v /∈ Σ.
Let V = A−W .
For x ∈ A and σ ∈ Σ, let x(σ) ∈ W be the
result of replacing every v in x by σ.
Hales-Jewett Theorem: If W is parti-
tioned into finitely many pieces, then there
is some x ∈ V such that all its instances
x(σ) are in the same piece of the partition.

In fact, the things substituted for v can be
any pre-specified finite subset of A, not nec-
essarily just Σ.

If U is a minimal idempotent in 〈βW,_〉,
then the partition piece that is in U works
in the conclusion of the theorem.



Proof of Hales-Jewett

Let U be a minimal idempotent in βW and
P the piece of the partition in U .
Let V � U be a minimal idempotent in βA.
Because V is a 2-sided ideal in A, βV is a
2-sided ideal in βA.
So V ∈ βV .
For each σ ∈ Σ,

σ̂ : A→ W : x 7→ x(σ)

is a homomorphism.
It induces a homomorphism σ̂ : βA→ βW .
Since V � U , we get that σ̂(V) is an idem-
potent � σ̂(U) = U in βW .
By minimality, σ̂(V) = U .
So σ̂−1(P ) ∈ V .
Pick x ∈

⋂
σ∈Σ σ̂

−1(P ).
This x clearly works.


